66 research outputs found

    Future medicine services robotics

    Get PDF
    It is an entry technique in use recently, albeit in selected centers and represents a further step in the field of minimally invasive surgery. Basically it has the same indications but, at present, is reserved for selected patients. Compared to traditional video-assisted surgery presents some important differences. The surgeon is physically distant from the operative field and sits at a console, equipped with a monitor, from which, through a complex system, controls the movement of the robotic arms. These are fixed the various surgical instruments, tweezers, scissors, dissectors, that team shall present to the operating table to introduce into the cavity operative site. The use of mechanical arms has the advantage of allowing a three dimensional view an image with more stops and to make the most delicate maneuvers purposes and also because the tools are articulated to the distal end. The disadvantage is related to the times longer operative and the difficulty of determining the strength (as can happen in giving the right tension to a surgeon's knot). In the future it can be assumed that robotic surgery will allow, with the development of the experience, the spread of the equipment and improvement of telecommunication systems and data, to operate at ever greater distances. If you think that today, the space centers, you can operate the robots sent to the moon or farther away, it is not hard to believe that it will become usual to operate from side to side of the area, providing you with all the best and specific skills. The first surgical robot called da Vinci, in honor of Leonardo da Vinci, was developed in Silicon Valley by Intuitive Surgical and in 2000 he obtained the authorization of the American Food and Drug Administration (FDA) for use in laparoscopic surgery. The present paper wishes to show briefly several models of the main robots placed in the service of human medicine

    Mitochondria are naturally micro robots - A review

    Get PDF
    The mitochondrion is a natural robot (cell) with a length of about one micron. Between organisms (plant, animal or human) with its organs and the atomic and molecular components are positioned based cells, which are building all the necessary organs body. Years ago, medical specialists who are studying organ disease have considered that is caused by impaired organ or related to other organs. For example, it was considered that all nerve diseases have started from stress due to disorder of the hypothalamic-pituitary-adrenal (adrenal glands). Today one knows that psychological stress triggers some metabolic, inflammatory and transcriptional perturbations that ultimately dispose to malady in cellular energetics, involving mitochondrial energy production respiratory stress. Future research on mitochondrial can lead to the elucidation of great issues of life (including the generation of illness, aging and death bodies). The main idea of this paper is that mitochondria are independent cells, flexible, essential for complex life

    From structural colors to super-hydrophobicity and achromatic transparent protective coatings: Ion plating plasma assisted TiO2 and SiO2 nano-film deposition

    Get PDF
    The implementation of the Ion Plating Plasma Assisted technology in the area of surface functionalization for structural color and relic preservation applications is presented. Interferometric structural colors on irregular bumped Titanium surfaces and transparent and achromatic nano films on ancient ceramic artifact have been investigated. Titanium metal and ceramic supports have been utilized for the surface functionalization tests: A metallic electron beam additive manufactured Titanium component and an ancient tile of the XIX century, which was characterized by strong chromatic valence and by a mixed porous and glazed surfaces, have been considered. A reactive magnetron sputtering Ion Plating Plasma Assisted apparatus operating in Argon or Oxygen atmospheres for TiO2 and SiO2 deposition has been utilized. Preliminary tests with two plasma treatments were carried out for optimal processing conditions definition. TiO2 nano-film deposition on irregular Ti surfaces has generated light direction depending color-changing surfaces while good achromatic and transparent coatings were obtained by using SiO2 coating. The high processing flexibility of the Ion plating technology is discussed. The SiO2 IPPA surfaces treatment resulted more convenient for restorative and preservation ancient historical tile was used to finally test the optimized process with Ion Beam Electron Microscopy, which was carried out on the tile porous structure, confirmed the high flexibility and efficiency of the innovative IPPA technology

    Investigating the effects of FRP bars on the seismic behavior of reinforced concrete coupling beams

    Get PDF
    International audienceSometimes, it is necessary to install regular openings like windows or doors in the shear walls. Such openings require special reinforcement. There are several methods for reinforcing deep beams, one of which is the use of fiber reinforced polymer bars. In this study, an experimental work on a coupled shear wall has been used to mode the system by using finite element method with ABAQUS software. The finite element model was established based on part of the experimental study and verified with the other parts of the experimental results. The comparison shows good agreement. In the study, three different types of fiber reinforced polymer bars were considered in improving the mechanical and structural behavior of RC coupling beams. Results of the finite element analysis showed the superiority of the CFRP bars in improving seismic behavior of the coupled shear wall comparing to GFRP and BFRP

    Invistigating the effects of frp bars on the seismic behavior of reinforced concrete coupling beams

    Get PDF
    Sometimes, it is necessary to install regular openings like windows or doors in the shear walls. Such openings require special reinforcement. There are several methods for reinforcing deep beams, one of which is the use of fiber reinforced polymer bars. In this study, an experimental work on a coupled shear wall has been used to mode the system by using finite element method with ABAQUS software. The finite element model was established based on part of the experimental study and verified with the other parts of the experimental results. The comparison shows good agreement. In the study, three different types of fiber reinforced polymer bars were considered in improving the mechanical and structural behavior of RC coupling beams. Results of the finite element analysis showed the superiority of the CFRP bars in improving seismic behavior of the coupled shear wall comparing to GFRP and BFRP

    Processability of Bulk Metallic Glasses

    Get PDF
    Microfluidic Shear Flow Instabilities in Injection Molded Glassy Metal are investigated. The formation of microfluidic shear flows instabilities involving the presence of different viscosities fluids has been observed in injection molded Bulk Metallic Glasses. The complex rheology of injection molded metastable glassy metal, which has been hypothesized to induce selective clustering of atoms of different steric hindrance, is discussed. Smaller Be, Cu and Ni atomsmay differently rearrange themselves in the bulk metal glassy super cooled liquids forming flow streams of lower viscosity. Segregation of atoms of different size could activate a variety of viscous flow instabilities such as folding and swirling. FEI Scios Dual-Beam Electron scanning and optical microscopy observations of a commercial liquid metal alloy (Zr44Ti11Cu10Ni10Be25) have been carried out. We discussed the influence of short-range order clusters distribution and its effect in locally induced shear flow instability and corrosion resistance

    Environmental protection through nuclear energy

    Get PDF
    Environmental protection through implementation of green energies is progressively becoming a daily reality. Numerous sources of green energy were introduced in recent years. Although this process initially started with difficulties, it finally resulted in an acceleration and implementation of new green energy technologies. Nonetheless, new major obstacles are emerging. The most worldwide difficult obstacle encountered, especially for wind and photovoltaic electric power plants, is the not regular and predictable green energy production. This study proposes solutions designed to solve this unpleasant aspect of irregular production of green energy. The basic idea refers to the construction of specially designed nuclear power plants acting as energy buffers. Nuclear power plants, indeed, may behave as proper energy buffers able to work to a minimum capacity when the green energy (i.e., wind power or PV) is steadily produced (namely, when the energy generated by the turbines or PV panels is at full constant capacity) but that can also run at progressively increased capacities when the wind or solar energy production reduces or stops. The work get two major contributions: 1-propose to the achievement of an energy buffer using nuclear power plants (for the moment on nuclear fission); 2-shows some theoretical aspects important needed to carry out the reaction of the fusion

    Something about the Balancing of Thermal Motors

    Get PDF
    Internal combustion engines in line (regardless of whether the work in four-stroke engines and two-stroke engines Otto cycle engines, diesel and Lenoir) are, in general, the most used. Their problem of balancing is extremely important for their operation is correct. There are two possible types of balancing: Static and dynamic balance. The total static to make sure that the sum of the forces of inertia of a mechanism to be zero. There are also a static balance partial. Dynamic balance means to cancel all the moments (load) inertia of the mechanism. A way of the design of an engine in a straight line is that the difference between the crank 180 [°] or 120 [°]. A different type of construction of the engine is the engine with the cylinders in the opposite line, called "cylinder sportsmen". In this type of engine (regardless of their position, which is most often vertical) for engines with two cylinders, one has a static balance total and an imbalance in the dynamic. Similar to the model of the earth concentrated in rotation movement are resolved and load balancing shafts rotating parts. An important way to reduce losses of heat engines is how to achieve a better balance. The methods may be used in equal measure and on engines with external combustion, type Stirling or Watt

    corrigendum kinematics and forces to a new model forging manipulator

    Get PDF
    Correction to: American Journal of Applied Sciences http://doi.org/10.3844/10.3844/ajassp.2017.60.80, published online January 3, 2017; updated April 29, 2019 The original version of this Article contained Mr. MirMilad Mirsayar as a co-author. Mr. Mirsayar has not contributed to the preparation and publication of this manuscript. These errors have now been corrected in the HTML and PDF versions of the Article. http://doi.org/10.3844/10.3844/ajassp.2017.60.80

    Cam Dynamic Synthesis

    No full text
    The paper presents an original method to make the geometric synthesis of the rotary cam and translated tappet with roll. Classical method uses to the geometric synthesis and the reduced tappet velocity, and in this mode the geometric classic method become a geometric and kinematic synthesis method. The new geometric synthesis method uses just the geometric parameters (without velocities), but one utilizes and a condition to realize at the tapped the velocities predicted by the tapped movement laws imposed by the cam profile. Then, it makes the dynamic analyze for the imposed cam profile, and one modify the cam profile geometric parameters to determine a good dynamic response (functionality). In this mode it realizes the dynamic synthesis of the cam, and we obtain a normal functionality
    • …
    corecore